

Integrated ecological modelling to predict migration processes in support of river restoration and protection management

Peter Goethals, Andy Dedecker, Pieter Boets, Ine Pauwels en Ans Mouton

Peter.Goethals@UGent.be

Opportunities

Increase of diversity in pool of modelling methods:

- Integration of hydrological and ecological models
- Integration of knowledge-based and data driven approaches
- Model simplification techniques (BBN, CA)

More data available:

- Data floods...
- New monitoring technologies (sensors, remote sensing)

Policy needs and growing interest:

Managers and policy makers start to gain interest in modelling and simulation

Challenges

Modelling methods:

- Even simple models can quickly become complex...
- Quality assessment, based on application needs!
- Standardisation / BAMM

Data:

- Data quality / standardized data collection
- New monitoring technologies: how to integrate in efficient manner (data compatibility)

Policy:

- Belief in simulation results vs. 'personal simulations'
- Actual application of results is still missing

Habitat suitability modelling: diversity of techniques since 2000

Insights in relations between abiotic and biotic characteristics

Gammaridae (Crustaceans)

Integrated predictions: coupling with water quality models

yes

regression tree on other yes independent variables (e.g. water quality variables) to make a prediction about the dependent variable (e.g. the Dependent variable ecological quality) Prediction of independent variable

Classes of Ecological Quality

□ predictions based on PEGASE output for 2006
 □ predictions based on PEGASE output for 2015
 □ predictions based on PEGASE output for 2027

New needs and opportunities: multi-habitat use and migration

Spatial-explicit and dynamic modelling

Aquatic Ecology (2006) 40:249–261 DOI 10.1007/s10452-005-9022-2 © Springer 2005

Development of an in-stream migration model for *Gammarus pulex* L. (Crustacea, Amphipoda) as a tool in river restoration management

Andy P. Dedecker*, Peter L. M. Goethals, Tom D'heygere and Niels De Pauw

In-stream migration modelling based on electrical circuit analogon for river restoration

- GIS overlays, calculation of minimal migration time from colonized systems to site of interest
- based on vectors
- migration time = min (migration distance / migration speed)
- with migration speed = 1 / migration resistance

In-stream migration modelling based on electrical circuit analogon

Downstream Upstream (Gammarus migration) Resistance 10 - 15

Invasive species: a global but also local problem

Source: Parker, N. (2009) Biofouling Invasions International Measure development. Presentation to International Paint and Printing Ink Council (IPPIC), Antifouling Working group

Habitat suitability modelling

Boets et al. (2010) Ecological Informatics 5: 133-139

Prediction on future distribution

Prediction on future distribution

75% of the rivers are suitable

Extension to air and land via cost-function modelling (ArcGIS)

ECOLOGICAL MODELLING 203 (2007) 72-86

Development of migration models for macroinvertebrates in the Zwalm river basin (Flanders, Belgium) as tools for restoration management

Andy P. Dedecker, Koen Van Melckebeke, Peter L.M. Goethals*, Niels De Pauw

Extension to air and land via cost-function modelling (ArcGIS)

 Minimal time ('lowest cost') to migrate between two locations based on raster data

Fig. 4 – The algorithm underlying the Cost Weighted Distance function. i: source cell; i+1: target cell; N_i : accumulated resistance to reach cell i; R_i : the resistance to migrate through cell i.

Extension to air and land via cost-function modelling (ArcGIS)

Ephemera

Limnephilidae

• Limitations related to population dynamics and need for age based habitat suitability...

Potential of cellular automata to analyse migration potential (and spatial-explicit population changes): Pauwels et al. (2013)

- Extra insights via inclusion of population dynamics and interspecies processes (competition, predation, foodweb)
- Transparant
- Limited set of rules
- Limited data and information requirements
- Short simulation time

Stoneflies: two very distinct habitats needed during life cycle

- Aquatic stage (larvae)
- Related to stones, high flow velocities and unpolluted water
- Period: October -April

- Terrestrial stage (adults)
- In vegetation along river banks
- Period: May -September

Need for spatial-explicit and dynamic models

 <u>aquatic and terrestrial habitat suitability models</u> <u>development</u>: HSI model based on regression (or knowledge based) method as basis for rules

- RULE 1: Population increase/decrease (reproduction + mortality (+ predation + competition)) = F(t, HSI): time explicit regression line/curve F(HSI)
- RULE 2: Population migration = F (t, HSI cel and neighbouring cells, including resistance factor)

RULE 1: Population increase/decrease

- Result of reproduction + mortality (+ predation + competition))
- F(t, HSI): time explicit regression lines/curves F(HSI)

September October November December ... Time

Maximum per cell (suppose linear increase to certain maximum density/abundance)

RULE 1: Population increase/decrease

Typical pattern <u>in aquatic system</u> with good and moderate HSI

RULE 2: Population migration

Rule examples in aquatic system

Potential insights

- Habitat and water quality improvement needs
- Zones with highest criticality and highest added value for restoration actions
- Design of buffer zones (width, vegetation type, connectivity, relation with aquatic conditions)
- Stocking?
- Timing of the expected effects of restoration actions
 - + what are the critical factors to consider

The life of pike (Esox lucius L)

Hide and rest in vegetation

Hunt near obstacles

Different activities Different habitats

Develop in vegetation-rich area

Habitat diversity and suitability is

very important

Reproduce in shallow areas

River management questions

shipping > agriculture > ecology

River management questions: restore pike populations in rivers

shipping > agriculture > ecology

Shipping + ecology

BUT ... restoration and protection of natural banks not always possible: what is optimal / minimal... feasible investment in spawning habitats?

Pike migration modelling: CA vs IBM

(no population dynamics included yet)

Results CA model: application on Yzer river

Example simulations CA model

Expected pike distributions based on habitat suitability

CA-simulated pike distributions:
How to validate? Spatialexplicit and dynamic data
needed

Model calibration and validation via Radio-telemetry
River Yser

 During November and December 2010 15 pike were caught and tagged

Radio-telemetry River Yser

River management questions

Specific questions of river managers

- Ideal distance between spawning places?
- Ideal dimensions of natural banks?
- Effect of connecting natural areas to the river?
- Effect of solving migration barriers?
- Ideal water level management?